汤琨
微电子与光电子学系 博导
汤琨微电子与光电子学系 博导 |
个人简历
2006和2011年分别在港澳宝典资料大全基础学科教学强化部和物理学院获理学学士和工学博士学位 2022年被聘为港澳宝典资料大全港澳宝典资料大全副教授,博士生导师 研究方向
汤琨长期从事宽禁带半导体材料与器件的研究工作,特别是在氧化物及金刚石材料生长、掺杂调控、缺陷机理、纳米器件等领域取得丰富的研究成果;在包括Appl. Phys. Lett., Environ. Sci. & Technol., ACS Appl. Mater. Interface, Adv. Mater. Technol., Appl. Surf. Sci., J. Alloy. Compd. 等在内的国际著名期刊上发表70余篇SCI论文,引用1000余次,授权国家发明专利数项; 主持项目: [4] 国家自然科学基金面上项目,No. 61974059,基于TiN-ZnO异质结和ZnO微纳米柱的多功能太阳光收集转化系统,2020.1 – 2023.12,已结题 [3] 国家自然科学基金面上项目,No. 61674077,基于表面等离子激元共振的TiN/ZnO超材料的设计、制备、性质及光催化器件的研究,2017.1 – 2020.12,已结题 [2] 国家自然科学基金青年基金,No. 61504057,N掺杂ZnO中补偿施主与受主形成机制的研究,2016.1 – 2018.12,已结题 主要课程
《半导体器件基础》,本科三年级 代表成果
2024年 [64] “First principles investigation on the Boron-VA (VA=N, P, As, Sb) complexes in diamond for possible n-type conductivity”, Mater. Today Comm. 41, 110266 (2024). (通讯作者) [63] “Diamond-based electron emission: Structure, Properties, and applications”, Chin. Phys. B 33, 098102 (2024). (通讯作者) [62] “A Theoretical study on dopants substituted on the H-terminated surface regulating the threshold concentration of nitrogen for accelerating diamond growth”, Diamond Relat. Mater. 147, 111317 (2024). (通讯作者) [61]“Nitrogen adsorption induced surface kinetics changes of diamond growth by microwave plasma CVD”, Diamond Relat. Mater. 146, 111181 (2024). (通讯作者) [60]“The regulation effect of trace amount of oxygen on the properties of ptype boron-doped diamond”, J. Mater. Res. 39, 1313 (2024). (通讯作者) [59]“Formation mechanism of SiV in diamond by unintentional silicon doping by microwave plasma chemical vapor deposition”, Vacuum 222, 113027 (2024). (通讯作者) [58] “High efficiency of boron doping and fast growth realized with a novel gas inlet structure in diamond MPCVD system”, Carbon Lett. 34, 1115 (2024). (通讯作者) 2023年 [57] “Farming on the Ocean via Desalination (FOOD)”, Environ. Sci. Technol. 57, 21104 (2023). (通讯作者) [56] “The effect of oxygen/nitrogen co-incoporation on the regulation of the growth and properties in boron-doped diamond films”, Chin. Phys.B 32, 118102 (2023). (通讯作者) [55] “An innovative gas inlet design in a microwave plasma chemical vapor deposition chamber for high-quality, high-speed, and high-efficiency diamond growth”, J. Phys. D: Appl. Phys. 56, 375104 (2023). (通讯作者) [54] “The boron-phosphorous co-doping scheme for possible n-type diamond from first principles”, Comput. Mater. Sci. 222, 112113 (2023).(通讯作者) [53] “Design of a quantum-spin sensor with sub-micron resolution and enhanced optical read-out ability by the nitrogen-vacancy centers in diamond”, J. Mater. Res. 38, 4819(2023).(通讯作者) [52] “Research of the weak negative thermal quenching (NTQ) effect of nitrogen vacancy centers in nitrogen-doped diamond”, J. Lumin. 254, 119536 (2023).(通讯作者) [51] “First-principles investigation on the boron-oxygen complexes in diamond”, Comput. Mater. Sci. 216, 111867 (2023). (通讯作者) [50] “Suppression and compensation effect of oxygen on heavily boron doping behavior in diamond films”, Chin. Phys. B 32, 038101 (2023).(通讯作者) 2022年 [49] “The effect of oxygen on the regulation of the properties in moderately boron-doped diamond films”, Chin. Phys. B 31, 128104 (2022).(通讯作者) [48] “Enhanced Contactless Salt-Collecting Solar Desalination”, ACS Appl. Mater. Interface 14, 34151 (2022)(通讯作者) [47] “Significantly suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD”, Chin. Phys. B 31, 118102 (2022).(通讯作者) [46] “The origin, characteristics, and suppression of residual nitrogen in a MPCVD diamond growth reactor”, Chin. Phys. B 31, 128106 (2022).(通讯作者) 2021年及以前 [45] “Nitrogen modulation of boron doping behavior for accessible n-type diamond”, APL Mater. 9, 081106 (2021). (通讯作者) [44] “Sustainable Solar Evaporation while Salt Accumulation”, ACS Appl. Mater. Interface 13, 4935 (2021). (封面论文, 通讯作者) [43] “Sustainable Solar Evaporation from Solute Surface via Energy Downconversion”, Global Challenges 5, 2000077 (2021). (邀请论文:清洁饮用水专刊, 通讯作者) [42] “Sulfur regulation of boron doping and growth behavior for high-quality diamond in microwave plasma chemical vapor deposition”, Appl. Phys. Lett.117, 022101 (2020). (通讯作者) [41] “Identification and control of defects in N-doped ZnO”, Chin. Sci. Bull. (科学通报) 65, 2708 (2020). (邀请综述, 第一作者) [40] “Synthesis and characterization of Sb-doped ZnO nanowires by chemical vapor deposition”, J. Lumin. 221, 117025 (2020).(通讯作者) [39] “Charge transfer dynamics of CdTe Quantum dots fluorescence quenching induced by ferrous (II) ions”, Appl. Phys. Lett. 116, 012105 (2020).(通讯作者) [38] “Tailoring of nitrogen-vacancy color centers in diamond epilayers by in-situ sulfur and nitrogen anion engineering”, J. Phys. D: Appl. Phys. 53, 075107 (2020).(通讯作者) [37] “Carbonized tree-like furry magnolia fruits-based evaporator replicating the feat of plant transpiration”, Global Challenges 3, 1900040 (2019). (通讯作者、正封论文) [36] “Synthesis and properties of tellurium-nitrogen co-doped ZnO micro-/nano-rods”, Opt. Mater. Express 9, 652 (2019).(通讯作者) [35] “Toward facile broadband photodetectors based on self-assembled ZnO nanobridges/rubrene heterostructure”, Nanotechnology 30, 065202 (2019).(通讯作者) [34] “Carbonized Bamboos as Excellent 3D Solar Vapor-Generation Devices”, Adv. Mater.Technol. 4, 1800593 (2019). (通讯作者、正封论文) [33] “First-principles insights on the electronic and optical properties of ZnO@CNT core@shell nanostructure”, Sci. Rep. 8, 15464 (2018).(通讯作者) [32] “Highly efficient solar steam generation by hybrid plasmonic structured TiN/meso-porous anodized alumina membrane”, J. Mater. Res. 33(22), 3857 (2018).(通讯作者) [31] “Early stage of Cs activation mechanism for In0.53Ga0.47As(001) 2 (24) surfaces: Insights from first-principles calculations”, Appl. Surf. Sci. 457, 150 (2018).(通讯作者) [30] “Photo-assisted Hysteresis of Electronic Transport for ZnO Nanowire Transistors”, Nanotechnology 29, 115204 (2018).(通讯作者) [29] “First-principles study on the structural stability and optoelectronic properties of different Indium component InxGa1-xAs materials”, Mater. Res. Express 5, 015902 (2018). (通讯作者) [28] “The suppression of zinc interstitial related shallow donors in Te-doped ZnO microrods”, J. Alloy. Compd. 735, 1232 (2018).(通讯作者) [27] “identification and tuning of zinc-site nitrogen-related complexes in ZnO material”, J. Vac. Sci. Technol. A 36, 021503 (2018).(通讯作者) [26] “Behavior and impact of sulfur incorporation in Zinc Oxysulfide alloy grown by metal organic chemical vapor deposition”, Appl. Surf. Sci. 435, 297 (2018).(通讯作者) [25] “Optical fingerprints of donors and acceptors in high-quality NH3-doped ZnO films”, Opt. Mater. Express 7, 1169 (2017).(第一作者、通讯作者) [24] “Thermal evolution of zinc interstitial related donors in high-quality NH3-doped ZnO films”, Opt. Mater. Express 7, 593 (2017).(第一作者、通讯作者) [23] “Recent progress on the native defects and p-type doping of zinc oxide” (Topical review), Chin. Phys. B 26, 047702 (2017)(第一作者、邀请综述) [22] “Formation of VZn-NO shallow acceptors with the assistance from tellurium in nitrogen-doped ZnO films”, J. Alloy. Compd. 699, 484 (2017). (第一作者、通讯作者) [21] “Experimental investigation on nitrogen related complex acceptors in nitrogen-doped ZnO films”, J. Alloy. Compd. 696, 590 (2017).(第一作者、通讯作者) [20] “The luminescent inhomogeneity and the distribution of zinc vacancy in N-doped ZnO microrods”, Nanoscale Res. Lett. 11, 511 (2016).(通讯作者) [19] “Identification and control of native defects in N-doped ZnO microrods”, Opt. Mater. Express 6, 2847 (2016).(通讯作者) [18] “High quality ZnO growth, doping, and polarization effect”(invited review), J. Semicond. 37, 031001 (2016).(第一作者、邀请综述) [17] “The compositional, structural, and magnetic properties of a Fe3O4/Ga2O3/GaN spin injecting hetero-structure grown by metal-organic chemical vapor deposition”, Appl. Surf. Sci. 388, 141 (2016).(通讯作者) [16] “Substrate polarity and surface pretreatment temperature dependence of ZnO homoepitaxy”, Appl. Surf. Sci. 361, 33 (2016).(通讯作者) [15] “The roles of buffer layer thickness on the properties of the ZnO epitaxial films”, Appl. Surf. Sci. 388, 557 (2016).(第一作者、通讯作者) [14] “Effects of indium doping on the crystallographic, morphological, electrical, and optical properties of highly crystalline ZnO films”, J. Alloy. Compd. 653, 643 (2015). (第一作者、通讯作者) [13] “Fabrication and Characterization of Highly Oriented N-Doped ZnO Nanorods by Selective Area Epitaxy”, J. Nanomater. 2015, 854074 (2015).(通讯作者) [12] “Annealing in tellurium and nitrogen co-doped ZnO: The roles of intrinsic zinc defects”, J. Appl. Phys. 117, 135304 (2015).(第一作者) [11] “Comparative study of the effect of H2 addition on ZnO films grown by different zinc and oxygen precursors”, J. Mater. Res. 30, 935 (2015).(通讯作者) [10] “The Zn diffusion induced changes of Fe3O4 films grown on ZnO template by Metal-Organic Chemical Vapor Deposition”, J. Magn. Magn. Mater. 385, 257 (2015).(通讯作者) [9] “Design of an Integrated Gradient-Index Light Condenser for the Light Delivery in a Heat Assisted Magnetic Recording Head”, IEEE Transact. Magn. 50, 3301206 (2014).(第一作者、通讯作者) [8] “Temperature-dependent exciton-related transition energies mediated by carrier concentrations in unintentionally Al-doped ZnO films”, Appl. Phys. Lett. 102, 221905 (2013).(第一作者) [7] “Temperature-dependent photoluminescence of ZnO films codoped with tellurium and nitrogen”, J. Appl. Phys. 112, 103534 (2012).(第一作者) [6] “Mutually beneficial doping of tellurium and nitrogen in ZnO films grown by metal-organic chemical vapor deposition”, J. Vac. Sci. Technol. A 30, 051508 (2012).(第一作者) [5] “Influence of thermally diffused aluminum atoms from sapphire substrate on the properties of ZnO epilayers grown by metal-organic chemical vapor deposition”, J. Vac. Sci. Technol. A 29, 03A106 (2011).(第一作者) [4] “Tellurium assisted realization of p-type N-doped ZnO”, Appl. Phys. Lett. 96, 242101 (2010).(第一作者) [3] “Suppression of compensation from nitrogen and carbon related defects for p-type N-doped ZnO”, Appl. Phys. Lett. 95, 192106 (2009).(第一作者) [2] “Carbon clusters in N-doped ZnO by metal-organic chemical vapor deposition”, Appl. Phys. Lett. 93, 132107 (2008).(第一作者) [1] “p型N掺杂ZnO薄膜的MOCVD生长与电学性质”, 半导体技术 33, 341 (2008).(第一作者) |
联系方式
|
|